Construction of two-dimensional topological field theories with non-invertible symmetries

نویسندگان

چکیده

A bstract We construct the defining data of two-dimensional topological field theories (TFTs) enriched by non-invertible symmetries/topological defect lines. Simple formulae for three-point functions and lasso two-point are derived, crossing symmetry is proven. The key ingredients open-to-closed maps a boundary relation, which we show that diagonal basis exists in Hilbert spaces. then introduce regular TFTs, provide their explicit constructions Fibonacci, Ising Haagerup ℋ 3 fusion categories, match our with previous bootstrap results. end explaining how non-regular TFTs obtained from via generalized gauging.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitons in Two–dimensional Topological Field Theories

We consider a class of N = 2 supersymmetric non–unitary theories in two– dimensional Minkowski spacetime which admit classical solitonic solutions. We show how these models can be twisted into a topological sector whose energy–momentum tensor is a BRST commutator. There is an infinite number of degrees of freedom associated to the zero modes of the solitons. As explicit realizations of such mod...

متن کامل

State sum construction of two-dimensional open-closed Topological Quantum Field Theories

We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma–Hosono–Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This constr...

متن کامل

Two-dimensional Topological Quantum Field Theories and Frobenius Algebras

We characterize Frobenius algebras A as algebras having a comultiplication which is a map of A-modules. This characterization allows a simple demonstration of the compatibility of Frobenius algebra structure with direct sums. We then classify the indecomposable Frobenius algebras as being either \annihilator algebras" | algebras whose socle is a principal ideal | or eld extensions. The relation...

متن کامل

Non-commutative Extensions of Two-dimensional Topological Field Theories and Hurwitz Numbers for Real Algebraic Curves

Contents 1. Introduction 1 2. Structure algebra 4 2.1. Definition of a structure algebra 4 2.2. Semisimple structure algebras 7 2.3. Structure algebra of a finite group 11 3. Cuts of stratified surfaces 15 3.1. Stratified surfaces 15 3.2. Cut systems 17 3.3. Basic and simple surfaces 21 3.4. Neighboring complete cut systems 25 4. Two-dimensional topological field theory 29 4.1. Definition of Kl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2021

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep12(2021)028